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M I N I M U M  A V ,  THREE-IMPULSE TRANSFER ONTO A 

TRANS-MARS ASYMPTOTIC VELOCITY VECTOR 

By Wi l l i am C. Bean 
Manned Spacecraft Center  

SUMMARY 

For the numerical study that is presented, the primary objective was to obtain 
a set of minimum AV, three-impulse maneuvers from a specified circular Earth 
parking orbit onto a constrained asymptotic velocity vector characteristic of M a r s .  
A computer program based on an accelerated gradient method for function minimization 
was used. Twenty cases were examined in which the four parametric values (O" ,  2"; 
4", and So) for the out-of-plane angle of the asymptotic velocity vector and the five 
parametric values (8, 12, 24, 48, and 72 hours) for  the period of the elliptical first 
transfer conic were used. It is believed that the numerical study makes the following 
quantitative contributions. 

1. The study verified numerically the existence of three-impulse maneuvers 
which provide measurabie improvement in 18 of 20 cases studied, even for realistically 
small launch windows, over corresponding one-impulse maneuvers. For the cases 
examined, the improvement is from -0.23 percent to +7.40 percent lower velocity 
penalty, that is, total AV. 

2. For the cases examined, the study obtains the optimum relative distribution 
(among the impulses) of energy-changing and plane-changing duties. Previous studies 
have obtained minimum AV, three-impulse trajectories from sets of maneuvers in 
which all of the plane changing occurs at the high-altitude middle impulse. Imposition 
of this characteristic, which is valid for the minimum AV, infinite-time maneuver, 
would have been unrealistic for the (finite-time) cases examined, for which the low- 
altitude third impulse performed as much as 29.3 percent of the plane changing. 

3. The study determines that the velocity penalty for  the small-launch-window 
three-impulse cases examined is only 0.38 to 5.2 percent higher than for correspond- 
ing coplanar cases. 

4. The analysis discerns that the three-impulse maneuvers involve a 0.13 to 
5.8 percent greater velocity penalty than the corresponding absolute minimum AV, 
time-open three-impulse maneuvers involve. 



INTRODUCTION 

Studies frequently have emphasized energy considerations in the determination of 
a launch window for transfer from an Earth orbit onto a trans-Mars trajectory. These 
studies usually noted that a parking orbit could be established with an appropriate in- 
clination containing the required asymptotic direction. Therefore, the supposition was 
made that launch would occur with an instantaneous burn at the perigee of an escape 
hyperbola, with the plane of the departure trajectory coincident with the parking-orbit 
plane. 

For a specific mission, both the required asymptotic direction and the parking- 
orbit inclination vary in inertial space with time passage. Therefore, it is realistic to 
anticipate that the required asymptotic velocity vector may not lie in the parking-orbit 
plane. Consequently, the need to regulate fuel expenditure according to the dual re-  
quirements of performing plane changes and imparting energy indicates a further re -  
duction in launch windows for Earth-to-Mars missions. 

With regard to examination of the dual requirements, certain one- and two-burn 
requirements were studied by Deerwester (ref. 1). The following concepts were among 
the conclusions. 

1. The actual departure window is much smaller than the departure window 
dictated by energy requirements alone. 

2. The relationship between the declination, of the required departure asymptote 
and the inclination of the parking orbit profoundly affects the size of the launch window. 

3. A quantitative comparison of out-of-plane escape maneuvers from circular 
orbit and, in particular, selection of a set of maneuvers yielding a minimum velocity 
penalty for a particular asymptotic velocity vector suggest extensive use of a digital 
computer. 

More recently, optimum three-impulse transfer onto an escape asymptote has 
been studied (ref. 2). For such a transfer, several additional degrees of freedom a r e  
permitted, including consideration of elliptical parking orbits. 

Finally, an analysis presented by Edelbaum (ref. 3) indicated the likelihood that 
a class of three-impulse maneuvers from a circle to a prescribed asymptotic velocity 
vector exists, each maneuver consuming less  fuel than the corresponding minimum 
AV, one- and two-impulse transfers. The assumption is made that hyperbolic perigee 
can occur at an altitude lower than the circular parking-orbit radius. Also, it is 
suggested that, although unrealizably long flight times result, the lower bound for 
velocity expenditure is attained by allowing the altitude at  which the second impulse is 
applied to increase without limit and by allowing the altitude at which the third impulse 
is applied to decrease to zero with respect to the origin of attraction. 

The conclusions of previous studies led to a numerical study of 20 cases in which 
the duration of the first transfer coasting a r c  and the target asymptotic velocity vector 
were constrained. 
lower bound for the perigee altitude of the escape hyperbola were fixed. The pair of 

In each case, the same target hyperbolic energy and the same 
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parameters for the study were prescribed values for  the period T1 of the coasting arc 
between the first and second impulses and for the out-of-plane angle D of the asymp- 
totic velocity vector. 

For each case, the objectives were to determine the following facts. 

1. A minimum AV, three-impulse maneuver from a specified circular Earth 
parking orbit onto the appropriate target asymptotic velocity vector 

2. The decrease in velocity expenditure relative to the appropriate reference 
one-impulse transfer 

3. The increase in velocity expenditure relative to the corresponding minimum 
AV, three-impulse coplanar maneuver which imparts the desired energy 

4. The relative distribution, among the three impulses, of both energy-imparting 
and plane-changing responsibilities 

5. The excess fuel expenditure over the corresponding absolute minimum AV, 
time -open, three- impulse transfer 

In the numerical study, a 262-nautical-mile Earth parking orbit was assumed. 
The hyperbolic energy was fixed by the requirement that the magnitude of the asymp- 
totic velocity vector V, be 12 000 ft/sec. Hyperbolic perigee altitude w a s  constrained 
in each case to be no lower than 100 nautical miles above the surface of the Earth. The 
set  of values 8, 12, 24, 48, and 72 hours were considered for the period T1 of the 
first coasting arc;  and the set of values 0", 2", 4", and 6" were  considered for the 
out-of-plane angle D of the vector V,. 

--L 
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Finding a minimum AV maneuver involved a search in a class of pairs of trans- 
fer trajectories which could be ellipses, parabolas, or hyperbolas. However, specifi- 
cation of a period T 
ellipticity of this trajectory. 
presumptions. 

of motion for the first transfer coasting path guaranteed 1 
Also, the numerical study avoided the following 

1. That a given velocity increment was devoted entirely either to adding energy 
o r  to imparting plane changes 

2. That the three velocity increments for a three-impulse maneuver were 
mutually parallel or antiparallel 

3. That impulses must occur only at perigee or apogee of transfer conics 

4. That insertion occurred at perigee of the escape hyperbola 

5. That insertion must occur at or  above circular parking-orbit altitude 
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For each case, a minimum AV, three-impulse maneuver subject to the specified con- 
straints was found by using a modified program of an accelerated gradient method for 
function minimization (ref. 4). This report summarizes and discusses the results of 
such a numerical study, with relation to a class of possible Earth-to-Mars missions. 

The author wishes to express gratitude to Ivan L. Johnson of the Mission Planning 
and Analysis Division, NASA Manned Spacecraft Center, for continued guidance in the 
adaptation of the program of the accelerated gradient method and for assistance in 
theoretical development. Also, the author wishes to thank T. N. Edelbaum and 
H. J. Kelley of Analytical Mechanics Associates for verbal communications and 
assistance. 

SYMBOLS 

A - L A  

[A] 

a 

orthogonal 3 X 3 matrix relating (i, j ,  k)T to (I, J, K)T 

semimajor axis of the terminal hyperbola, Earth radii (e.  r. ) 

semimajor axis of the elliptical coast between the first and second 
impulses, e. r. 1 a 

+ + T  
[ B] orthogonal 2 X 2 matrix relating ( yp,TpY to (1, J )  

b semiminor axis of the terminal hyperbola, e, r. 

A 
D declination of V,, deg 

- z - +  
d r . V, (e.r .)2/hr 

e eccentricity of the terminal hyperbola 

F performance index (the sum of the magnitudes of the velocity increments for 
a given maneuver), e. r. /hr 

F’ augmented performance index, equation (4 1) 

g column vector of the original set of constraints with the components g 1’ 
g29 

g3, and 84 

g’ column vector of amended set of constraints with the components g 1’ g2(, 
g3, and 84 

intermediate equality constraint on a semimajor axis of the first coast 81 
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A 

terminal equality constraints on V, declination and semimajor axis, 
respectively 

-. 
amended V, declination constraint 

terminal inequality constraint on the radius of perigee 

2 scalar angular momentum of the terminal hyperbola, (e. r. ) /hr 

unit vector from the center of the Earth to the position of the vehicle at 
initial time 

orthonormal right-handed set of vectors 

unit orthogonal vectors in the plane of the hyperbola 

unit vector from the center of the hyperbola along the asymptote 
-L 

coparallel to V, 

unit vector in the direction of motion of the vehicle at initial time 

unit vector such that K = I X J 

y(yw - zv) - x(zw - xw) 

x(m - yu) - z(yw - zv) 

slope of the hyperbolic asymptote with respect to the (? ,? ) system 
P P  

z(zu - xw) - y(xv - yu) 

semilatus rectum of the terminal hyperbola, e. r. 

scalar magnitude of ?, e. r. 

terminal position vector (at insertion) 

scalar magnitude of e. r. 
P’ 

radius-of -perigee vector of the terminal hyperbola 

A 
V, right ascension, deg 
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IIIIII I1 I I1 

period of the elliptical coast between the first and second impulses for  a 
given three - impulse maneuver, hr  T1 

u, v, w velocity components in the (I, J, K) coordinate system of the target 
hyperbola at r 

2 
scalar magnitude of V e. r. /hr 

vP P’ 

2 
velocity vector at perigee for the terminal hyperbola v* 

2 
vm asymptotic velocity vector of the terminal hyperbola, e. r. /hr 

2 
x, y, z position components of r in the (I, J, K) coordinate system 

CY 11 control vector with the components cy 1, CY 27 . . . , cy 

a control vector CY which minimizes F( c y )  

2 2 

P,, p2 change in generalized eccentric anomaly between AV 

between AV2 and AV3, respectively, (e. r. ) 

and AV2 and 1 
1/2 A 2 

3 

17 column vector of the initial velocity increment with the components Au 
Avl, and Aw = (Y cy and (Y respectively, e . r . /h r  1 97 10’ 11’ 

Avl 

column vector of the intermediate velocity increment with the components 
Au2, Av2, and Aw = CY cy and cy respectively, e. r . / h r  2 5’ 6’ 7’ 

AV3 column vector of the final velocity increment with the components Au3, 
Av3, and Aw3 = a l ,  (Y and a3, respectively, e. r . /h r  27 

8 polar angle referenced from a specific axis, deg 

true anomaly of Q1 (fig. 1) with respect to the perigee of the first transfer 
conic, deg 

true anomaly of Q (fig. 1) with respect to the perigee of the f i rs t  transfer 2 conic, deg O 2  

e2’  true anomaly of Q2 (fig. 1) with respect to the perigee of the second 

transfer conic, deg 
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e 3v true anomaly of Q (fig. 1) with respect to the perigee of the second 3 
transfer conic, deg 

e 3vv true anomaly of Q (fig. 1) with respect to the'perigee of the terminal 
hyperbola, deg 

3 

1 7  '27 x column vector of constant Lagrange multipliers with the components h 
A32 and x4 

3 2  
E-l gravitational constant of the Earth, (e. r. ) hr  

4 argument of perigee with respect to the terminal position vector, deg 

Subscript : 

P conditions at the hyperbolic perigee 

Superscripts: 

* desired value at convergence 

T matrix transpose 

-1  matrix inverse 

METHOD 

Geometric symmetry permitted simplification of the mathematical model 
A 

for minimum AV orbit transfer from a circle. to a V, vector by substitution of an 
equivalent problem, namely, that of finding a minimum AV transfer, with the first 
impulse at a fixed point on the circular parking orbit, to a fixed V, magnitude and 
out-of-plane angle with respect to the parking-orbit plane. To solve the new problem, 
the in-plane angle for the V, vector was regarded as a parameter to be optimized in 
the solution. Then, in the first problem, any desired prespecified value for the in- 
plane angle could be regarded as having been obtained simply by a rotation through the 
appropriate angle of the initial point on the circular orbit. 

-J. 

2 

The solution was  expressed in a right-handed, orthonormal inertial coordinate 
system (I, J, K) based on the parking-orbit plane. In this system, I is a unit vector 
directed from the center of the Earth to the position of the vehicle at initial time, J 
is a unit vector in the direction of motion of the vehicle at initial time, and K is a 
unit vector given by the cross  product K = I x J.  Because there was  no loss of 



generality, it was  assumed that the parking orbit was  in the equatorial plane with I 
directed toward Aries, K directed toward the North Pole, and J completing the 

right-handed system (I, J, K). Subsequently, the out-of-plane angle of the Tm vector 
was referred to as declination and the in-plane angle as right ascension. 

For each of the 20 computer runs generated in the numerical study, the transfer 
maneuver obtained was required to minimize the performance index 

subject to the intermediate constraint gl = 0, the terminal equality constraints 

g2 = g = 0, and the terminal inequality constraint g4 5 0, where the column vector 3 
g was defined as 

g =  

a - a *  1 1  
sin D - (sin D)* 
a - a* 
r * - r  
- P  P 

Fixing (sin D)* sufficed to f i x  the declination angle D*, because -90" 5 D* 5 90" 
by definition. Furthermore, al* was defined so that a corresponding desired value 

for the period T1* was fixed according to the equation 

The value al* was selected so that IVml* = 12 000 ft/sec, where 

1vm(* = (&1'2 (4) 

The value r * was fixed at 1.0290365646 e. r .  (at a 100-nautical-mile altitude above 
P 

the surface of the Earth). 
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In using the program of the accelerated gradient method, it was useful to express 
g as a vector function of intermediate and terminal position and velocity variables. 
The resulting formula for g involved fractions; therefore, subsequent hand calcula- 
tions of certain partial derivatives used in the program were simplified by the sub- 
stitution of g2' for g 

2 

where 2' 

g2' = -erhg2 

It was preferable to use a formula for r namely 
P' 

h2(1 + e) r =  
P El 

(5) 

which is valid for all conics, including parabolas, because near -parabolic conics oc- 
curred as intermediate iteratives in the optimization process. 

For cases in which D* = O", it was found that inclusion of the second constraint 
introduced a redundancy with associated difficulties in obtaining convergence. The 
redundancy occurred because the optimization program 'naturally selects an in-plane 
solution in the absence of contrary constraints. Accordingly, for  such cases, the 
constraint g ' = 0 was  deleted, leaving 2 

with g = g  = O  and g = r  * - r  S O .  
1 2  3 P  P 

Finally, consider the second constraint, g = 0 initially, where 2 

g = sin D - (sin D)* 2 

3 
In spherical coordinates, the velocity vector at infinity V, is 

3 

V, = Iq,l(I cos RA cos D + J sin RA cos D + K sin D) (9) 

9 



Therefor e 

By analysis, for a hyperbola 

But for all conics 

Therefor e 

e = ( l + m  2) 1/2 

Equation ( 11) becomes 

However, by definition 

10 



Therefore, equation (14) becomes 

Using the fact that 

converts equation (10) into 

sin D = e 

As an intermediate step toward obtaining the necessary conditions for the prob- 
lem, it was important to express the constraint g as a function of the components 2 
with respect to the initial rectangular coordinate system of the position and velocity 
vectors immediately after application of the third velocity increment. In other words, 
it was useful to change the right member of equation (18) from a function of state vari- 
ables at hyperbolic perigee to a function of state variables immediately after insertion 
into the hyperbola. This change can be made by using the following equations. 

A 
r = XI + yJ + zK 

V = UI +vJ  + WK 
A 
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A A A A  A 

The unit vectors i, j, and k are defined as follows, where i and j lie in the 
hyperbolic plane of motion. 

where h = I? X $1 is the scalar angular momentum. 

Using equation (20); the following coordinate transformation can be written in 
matrix form. 

where [A] is the 3 X 3 square matrix given by 

- Y 
r 

Z - 
r 

(zu - xw) 
h h J 

T The orthogonality of [A] implies that [A] - = [A] ; therefore 
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Accordingly, equations (19) become, after simplification 

- L +  r = ri 

where 

2 2  

d = r  - V = x u + y v  + z w  

The symbols N, M, and L are defined as 

N Z(ZU - XW)  - ~ ( X V  - y ~ )  

M = X(XV - y ~ )  - Z(yW - ZV) 

L = y(yw - zv) - x(zw - xw) 

To convert equation (18) into an expression involving only quantities related to the 
initial rectangular reference frame at the instant of hyperbolic insertion, a pair of 
rectangular coordinate axis systems (i, j )  and (i , j ) in the plane of the hyperbola 
was  defined. Therefore, it is possible to define an argument-of-perigee angle Cp in 
such a manner that the (i , j ) system is related to the (c;) system by 

P P  

-La 

P P  

where [ B] is the 2 X 2 square matrix 

? 
1 

= 
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Therefor e 

(XI + yJ + zK) cos @ sin @ 1 = [ -sin @ cos q) ][(NI 

that is 

- 

(XI + yJ + zK)cos $) + (NI + M J  + LK)sin @ 
r rh 

+ yJ + zK)sin @ + (NI + M J  + LK)cos 
r r h -  

Equations (30) are equivalent to the pair of equations 

@ + h sin @) 
rh  

x s i n  @ + N  cos (- y sin @ + M  cos 
r r h  r rh  

+(- r r h  

A a 
The k-components of i and j a r e  

P P 

p - z cos $ L sin @ 
P 

Z 

- - (  r r > + (  rh  

14 



p 
:.' 

1 Therefore, equation (18) becomes 

It is useful to express e, h, cos @, sin @, and L in terms of x, y, z, u, 
v, and w. According to the laws of orbital mechanics 

'? 

Similarly 

1/2 h = [r2V2 - (r  A . 2 2  V) ] 
(34) 

The value of L was determined in equation (26). The remaining steps are to express 
cos @ and sin @ in terms of x, y, z, u, v, and w. 

The polar equation for a conic is 

h2 
p[1 + e cos (-@)I r =  

Therefore 

2 2 '1 Because cos @ + sin @ = 1 and because d > 0 on the upper half of a conic and 
d < 0 on the lower half of a conic 

sin ~p = -(&) 
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Accordingly, it is helpful to replace the constraint g2 by g2' = -erhg2. It is 
possible to consider g2' = 0, because g ' = 0 if and only if g2 = 0. From 
equation (35) 2 

ferh(sin D)* + zh cos @ + L sin @ g2' = 

-[(e2 - 1)1/2(-zh sin @ + L cos 

\ 

(39) 

In all cases, the control vector (Y was defined as 

In equation (40), P ,  and P, were  the changes in generalized eccentric anomaly 
2 3 

fi  

between A q l  and AV2 and between AV2 and AV3, respectively. 

The initial position on the 262-nautical-mile parking orbit in each case was  
selected on the positive X-axis. Pr ior  to the first transfer maneuver, the character- 
istic speed in the circular parking orbit of radius 1.07607599156 e. r. was 25 003 ft/sec. 

found for the components of g' and aF'/acu with zero, where 
Verification of a relative minimum for  F was obtained by comparing the values 

T F ' = F + X  g' 

Therefore 

T T aF' aF' 
(42) 

? 

is a necessary condition for  a minimum of F subject to the g-constraints. 

It was not possible to resolve a velocity impulse into components such that one 
component did only plane changing and did not alter the energy state. Nevertheless, it 
was  possible to resolve an impulse into two components, one normal to the current 
orbital plane and the other lying in the orbital plane. Because only the normal com- 
ponent of an impulse resulted in orbital plane change, that component was called the 
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"component of the impulse associated with plane changing. '' The in-plane component 
was called the "component of the impulse associated with energy changing. (' The 
"amount of plane changing accomplished by a three-impulse maneuver'' was  the sum of 
the magnitudes of the components associated with plane changing over all the impulses 
for the maneuver. The "percent of plane changing accomplished by a certain impulse" 
was  defined as the percentage equivalent of the ratio of the magnitude of the "component 
of this plane-changing impulse" with respect to '?the amount of plane changing associ- 
ated with the entire maneuver. ? '  A similar definition was adopted for "percent of 
energy changing accomplished by a certain impulse. '* 

Each of the 20 computer runs with the accelerated gradient method program as- 
T sumed an impulse-coast-impulse-coast-impulse type of maneuver. For each case, 

initial position and velocity components on a circular Earth parking orbit were input 
to the program. First guesses for cy were made to start the program converging to 

f find the value of cy* resulting in a minimum total velocity expenditure. The geometry 
for a typical minimum AV, three-impulse transfer sequence is shown in figure 1. The 
first impulse AV1 for the maneuver was 
made on the parking orbit at a true anomaly 

conic. 
made at a true anomaly e beyond the 
perigee of the first transfer conic, causing 
injection into a second transfer conic. The 
position of the second impulse occurred at 
a true anomaly e2' beyond the perigee of 

2 

beyond the perigee of the first transfer 
The second impulse AV2 was 

@ l  2 

X 

the second transfer conic. Injection into a 
hyperbolic escape trajectory then occurred 
at a true anomaly e 3t beyond the perigee 
of the second transfer conic, that is, at a 
true anomaly e 3" beyond the perigee of 
the target hyperbola. 

For each of the in-plane c a s e s ,  
where D* = 0, the minimum AV transfer 
sequence w a s  found to be a "double 
Hohmann" type of maneuver, that is, a 

TRAJECTORY 0 

TRAJECTORY 1 
TRAJECTORY 2 
TRAJECTORY 3 
Q1, Q 2 ,  Q3 

&VI, N2 I AV3 

AP1, A P 2  

PI' P 2 '  P j  

J 
-Y  

CIRCULAR EARTH PARKING ORBIT 

FIRST TRANSFER ELLIPSE 

SECOND TRANSFER ELLIPSE 

TERMINAL HYPERBOLA 
POINTS O F  APPLICATION OF F I R S T ,  SECOND, AND 
THIRD VELOCITY INCREMENTS 

F I R S T ,  SECOND,AND THIRD VELOCITY 
INCREMENTS 

APOGEE POINTS OF F I R S T  AND SECOND TRANSFER 
CONICS 

PERIGEE POINTS OF F I R S T  TRANSFER CONIC, 
SECOND TRANSFER CONIC, A N 0  TERMINAL 
HYPERBOLA 

Figure 1.  - Geometry for a typical mini- 180" - 180" perigee-apogee-perigee type of 
maneuver. Specifically, for each in-plane 
case, mum AV, three-impulse transfer 

sequence. 
t. = e 3 f  = e 3 * *  = 0" and e 2  = 

e2' = 180". Or, for each in-plane case, 
the first impulse was at the perigee of the first transfer conic, the second impulse was 
at the apogee of both the first and the second transfer conics, and the third impulse was  
at the perigee of both the second transfer conic and the terminal hyperbolic trajectory. 

?, 
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For all in-plane and out-of-plane c a s  e s, except t h e  two cases in which 
T = 12 hours and D = 2" and in which T = 8 hours and D = 2", the inequality con- 1 1 
straint was satisfied as if it were an equality constraint; that is, the minimum permis- 
sible value for target hyperbolic perigee r * was invariably attained. For the two 

P 
exceptional cases, r exceeded r * by 0.04697 and 0.03731 e. r. , respectively. 

P P 
Furthermore, in all cases, a retrofire was  accomplished at the intermediate impulse. 

2 
(The vector AV2 always had a negative component in the direction of motion. ) The 
Hohmann features of the minimum AV transfer maneuvers apply only to in-plane se- 
quences. Computer run 4 (T1 = 8 hours and D = 6") is a sufficiently typical transfer 

sequence for a full three-dimensional case and is illustrated in figure 1. 

7 
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In figure 1, trajectory 0 is the circular parking orbit about the Earth. Trajec- 
tories 1, 2, and 3 a r e  the first and second transfer ellipses and the terminal hyper- 
bolic path, respectively. The a c t u a  1 transfer flight path is from Q1 to Q2 on 

trajectory 1, from Q to Q3 on trajectory 2, and thereafter on trajectory 3. The points 2 
Q,, Q2, and Q3 are the points of application of the first, second, and third velocity 
increments, respectively. The points P1, AP , P , and A P  are the perigee and 

apogee points of the first transfer ellipse and the perigee and apogee points of the sec- 
ond transfer ellipse, respectively. The point P3 is the perigee of the terminal hyper- 
bolic trajectory. Impulses do not occur at apsidal points. In fact, the points P1, AP2, 
and P a r e  not even reached in this illustrative minimum AV maneuver. 

1 2  2 

2 

RESULTS 

Illustrated in figure 2 is the fact that the three-impulse technique provides some 
improvement in launch window over the reference one-impulse method, but falls short 
of the absolute minimum AV maneuver (corresponding to infinite T1) referred to in 
reference 3. 

As an illustration of the advantage of the three-impulse technique, note that for 
D = 6", the minimum AV, three-impulse maneuver for T - 72 hours requires a 
velocity expenditure of 2. 15203 e. r. /hr, a 7 . 4  percent smaller velocity penalty than 
for the reference one-impulse case which requires a total velocity increment of 
2.32409 e. r. /hr. 

1 -  

.I 

The velocity expenditure reduction attainable by increasing the period T of the 

first coast ellipse for a given target declination D is comparable. For D = 6", the 
fuel expenditure for the case T1 = 72 hours is 2.15203 e. r.  /hr, only 3 . 9  percent less 
than for the m o s t expensive minimum AV c a s e examined for D = 6 "; namely, 
T I  = 8 hours, for which the velocity expended is 2.23849 e. r.  /hr. 

1 t 
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Figure 2. - Minimum AV velocity ex- 
penditure as a function of D (with 
a parameter 

0 

For the cases examined, the non- 
coplanarity velocity penalty is measurable, 
but not drastic (fig. 3). To illustrate the 
magnitude of the plane-change penalty, con- 
sider T1 = 12 hours. The velocity expend- 
iture for the D = 6" out-of-plane case is 
is 2.21599 e. r. /hr, or 4.3 percent higher 
than f o r  the corresponding D = 0" co- 
planar case, with a velocity expended of 
2.12430 e. r.  /hr. For T1 = 72 hours, the 
velocity requirements for  the 6" case ex- 
ceed t h o s e  for the 0" c a s e  by only 
1 .6  percent. 

Another result is that for the cases 
considered, t h e  typical minimum AV, 
three-impulse maneuver does not come 
close to completely uncoupling the energy- 
changing and plane-changing duties among 
the three impulses (table I). As a particu- 
lar e x a m p l e ,  for c o m p u t e r  run 4 

DECLINATION OF THE ASYMPTOTIC 
VELOCITY VECTOR, DEG 

O0 

I I I I I I 1- 

10  20 30  40  50 60  70 80 9 0  

PERIOD OF THE FIRST TRANSFER CONIC, TI, HR 

Figure 3. - Velocity expenditure as a function of T1 (with constant D) 

for a three-impulse sequence. 
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TABLE I. - DISTRIBUTION OF PLANE-CHANGING AND ENERGY-CHANGING 

DUTIES FOR THE MINIMUM AV, THREE-IMPULSE MANEUVERS 

Plane changing 
iss_ociated with 
AVl, percent  

-- 
23. a 
69.2 
71.4 
-- 

57.4 
22.0 
43.4 
-- 

61. 3 

49.4 

64.4 
-- 

46.2 

72. 1 
64.2 
-- 
57. 1 
67. 3 
57.4 

Energy changing 
ass_ociated witt 

AVl, percent  
_ _  

58.4 

67. 3 
52. 2 

56.8 

63. 5 

64.9 

65. 3 
65. 2 

72.0 

72. 2 

73.2 

72.8 

.75. 3 

76.9 

76. 6 

76. 7 

78.3 

78.5 

78.4 
78.4 _ _  ~. 

Plane changing 
tss2ciated witt 
AV2, percent 

- -~ . 

-- 
0 . 8  

4.4 

14.5 
-- 
14.0 
25.9 

15. 1 
-- 
4.6 

7. 5 
6. 8 
-- 
5.8 
6. 6 

12.0 
-- 
7.8 

10.3 
17.4 

.. - 

Inergy  changinl 
asszciated wit 

AV2, percent  

1 .0  

. 1  

.6 

. 9  

. 8  

. 7  

. 5  
15.6 

. 5  

.6 

.8  

. 7  

. 3  

. 3  

. 4  

. 4  

. 2  

. 3  

. 3  

. 4  
~ 

Plane changing 
tssqciated with 

AV3, percent 

-- 
75.4 
26.4 

14. 1 
-- 

28. 6 
52. 1 

41. 5 
-- 

34. 1 
43. 1 
28.8 
-- 

48.0 

21. 3 
23. 8 
-- 

35. 1 
22.4 
25.2 

Energy changing 
assqciated witt 

AV3, percent 

40.6 

32. 6 
47.2 

42. 3 

35. 7 

34.4 
34.2 

33.2 

27. 5 
27. 2 

26.0 

26. 5 

24.4 

22.8 

23.0 

22.9 

21. 5 

21. 2 
21. 3 
21.2 

~~~ 

(T1 = 8 hours and D = S O ) ,  A? does 32.1 percent of the plane c h a n g i n g  and 
2 

40.8 percent of the energy changing; AV does 56.0 percent of the plane changing 2 
and 28.2 percent of the energy changing; and A$3 does 11.9 percent of the plane 
changing and 31.0 percent of the energy changing. 

The AV components and generalized eccentric anomaly angles for the minimum 
AV, three-impulse maneuvers are given in table J.I in units of Earth radii and hours. 
It is observed-that e - e 2 180" and e st - e 2' 5 180" for all cases, with e 
always small, positive, and acute. The flight time between first and third impulses 
for most maneuvers was within an hour of the stated period of the first transfer conic. 

A s  a further illustration, consider again computer run 4 (T - 8 hours and 1 -  

The constraints for run4 were well 

D = 6") illustrated in figure 1. For this case, e = 1. 05", e 2  = 199.78", 

e 2' = -160. 50", 

satisfied with converged values for the four components of the constraint vector and 

for the 11 components of the vector aF'/acu of the order of 
degree of numerical accuracy was attained in all cases examined. 

e 3' = -6.17", and e 3T' = -3.90". 

Approximately this 
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TABLE II. - CONTROL-VECTOR AV COMPONENTS, GENERALIZED ECCENTRIC ANOMALY ANGLES, 

TOTAL AV, AND FLIGHT TIMES FOR THE MINIMUM AV, THREE-IMPULSE MANEUVERS 

0.00000 
-. 000 11 
.00250 
.01057 
. 00000 
-. 00047 
.00264 
.00833 
. 00000 
-. 00011 
.00193 
.00476 
. 00000 
.00004 
.00109 
.00240 
. 00000 
.00006 
.00073 
. 00 154 

Run 

1 
2 

3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.02083 
.00467 
.02781 
.03707 
. 0 1625 
.01747 
.02223 
.02892 
. 0 1050 
.01157 
.01440 
.01833 
.0067 1 
.00745 
.009 10 
. 0 1154 
.005 15 
.00571 
.00694 
.00883 

3 Au 

. 00000 

.02204 

.06396 

. 11027 

. 00000 

.01595 

.04728 

.0800 1 

. 00000 

. 0 1036 

.02855 

.04716 

. 00000 

.00675 

.01745 

.02833 

. 00000 

.00523 

. 0 13 14 
,02118 

Av3 

I. 86246 
.E6894 
.E4661 
.a3462 
.732 13 
.72800 

.72066 

.7 1204 

.58 103 

.57840 

.57386 

.568 13 

.488 10 

.48631 

.48305 

.47859 

.45110 

.44962 

.44677 

.44271 

Aw3 

D.00000 

. 14545 

. 18669 

.21315 

. 00000 

.09653 

. 13974 

.16470 

. 00000 

.06403 

.09425 

. 11839 

. 00000 

.04551 

.07113 

.09443 

. 00000 

.03872 

.06295 

.OB574 

'I2 

5.5850 
4. 7932 
4.3831 
4.1818 
6.3988 
5.6231 
5.0302 
4.8726 
8.0704 
6.9593 
6.4962 
6. 3827 
10. 175 
8.8 195 
8.4604 
8.3720 
11.650 
10. 191 
9.8755 
9. 7969 

Au2 1 Av2 
I 

Aw2 

0.00000 
-. 00478 
-. 05038 
-. 09788 
. 00000 
-. 01565 
-. 048 12 
-. 08644 
. 00000 
-.01458 
-. 0388 1 
-. 06451 
. 00000 

-. 01189 
-. 02844 
-. 04533 
. 00000 
-. 0 1008 
-. 02307 
-. 03621 

01 

6.4 iia 
5.6057 

6. 7632 
6.9071 
6.4 169 
7. 1844 
7.739i 
7.848: 
8.084E 
9. 186C 
9.617f 
9.6951 
LO. 186 
11.532 
11.868 
11.931 
11.660 
13. 110 
13.407 
13.465 

1 Au 

0.00000 
.02733 
.03710 
.04022 
. 00000 
.01591 
.02573 
.02713 
. 00000 
.00933 
. 0 1257 
.01300 
. 00000 
.00466 
.00572 
.00588 
. 00000 
.00297 
.00352 
.00362 

4 V l  

1.2439 
1.240 1 
1.2386 
1.2378 
1.3759 
1.3736 
1.3720 
1. 3716 
1.5294 
1.5279 
1.5273 
1.5272 
1.6240 
1.6232 
1.6230 
1. 6230 
1.6617 
1.6612 
1.6611 
1.6611 

~ 

~ 

0.00000 

.204 15 

.24068 

.2569 1 

. 00000 

. 16148 

.20975 

. 2  1894 

. 00000 

. 13060 

. 15331 

. 15708 

. 00000 

.09516 

. 10598 

. 10769 

. 00000 

.0768 1 

.OB402 

.OB514 

F 

2. 1272 
2. 1451 
2. 1892 
2.2385 
2. 1243 
2. 1412 
2. 1769 
2.2 160 
2. 1209 
2. 1341 
2. 1587 
2. 1848 
2. 1188 
2. 1285 
2. 1449 
2. 1621 
2.1180 
2. 1259 
2. 1387 
2. 1520 

CONCLUDING REMARKS 

It is believed that the numerical study makes several quantitative contributions. 

1 .  The study verifies numerically the existence of three-impulse maneuvers 
which afford measurable improvement in 18 of 20 cases studied, even for  realistically 
small launch windows, over corresponding one-impulse maneuvers. For the cases 
examined, the improvement is from -0.23 percent to +7.40 percent lower velocity 
penalty, that is, total AV. 

2. For the cases examined, the study obtains the optimum relative distribution 
(among the impulses) of energy-changing and plane-changing duties. Previous studies 
have obtained minimum AV, three-impulse trajectories from sets of maneuvers in 
each of which a.11 of the plane changing occurs at the high-altitude middle impulse. 
Imposition of this characteristic - which is valid for the minimum AV, infinite-time 
maneuver -would have been unrealistic for the (finite-time) cases examined, for 
which the low-altitude third impulse performed as much as 29.3 percent of the plane 
changing. 

t 
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3. The study determines that the velocity penalty for the small-launch-window 
three-impulse cases examined is only 0.38 to 5.2 percent higher than for corresponding 
coplanar cases. 

4. The analysis discerns that the three-impulse maneuvers involve a 0.13 to 
5.8 percent greater velocity penalty than the corresponding absolute minimum AV, 
time - open three- impulse maneuvers . 

The program of the accelerated gradient method has a high degree of flexibility 
and can be adapted to a variety of parameter optimization problems. The current study 
was  conducted on both IBM 7094 and Univac 1108 computers, and a typical case con- 
sumed 10 to 15 minutes of machine time. A large percentage of the core storage of the 
7094 was used. After the current problem was incorporated into the program, the only 
usual remaining difficulty was  to select appropriate penalty constants for the penalty 
function phase of the convergence process and a first guess for an optimum control 
vector. A second computational phase inherent in the accelerated gradient program, 
using a Newton method for functional minimization subject to nonlinear constraints, 
encountered numerical convergence problems only infrequently. The accelerated 
gradient program is not usually strongly dependent on the first guess for the control 
vector in problems with a payoff function with reasonably uncomplicated contours. 
However, the level of complexity of the three-impulse study usually required correct 
guessing of at least the algebraic sign and order of magnitude of each component of the 
control vector before convergence would ensue. An occasional further difficulty was 
the obtaining of a degenerate solution, that is, one in which an impulse o r  coast dura- 
tion vanished, even though a nondegenerate solution existed. Degenerate solutions 
were rejected, and alteration of the first guess for the optimum control vector eventu- 
ally led to attainment of a true three-impulse maneuver. 

” 

I 

A further related study under consideration deals with minimum AV, two- 
impulse and three-impulse transfer onto a trans-Mars asymptotic velocity vector from 
a regressing oblate Earth-assembly parking ellipse, with fixed period of the first 
transfer conic. Another study underway seeks minimum AV, four-impulse transfer 
from an Earth parking ellipse onto a conjunction-class trans-Mars asymptotic velocity 
vector, with fixed time of flight between first and fourth impulses. 

Recommended for further study a r e  (1 )  solution of specific fixed-time four- 
impulse problems, (2) canstruction of a good first-guess generator to use as an adjunct 
to the optimization method for fixed-time four-impulse problems, (3) determination of 
absolute minimum AV, three-impulse or four-impulse maneuvers for fixed-time prob- 
lems, and (4) modification of an optimization method to eliminate degeneracies of the 
type in which an impulse or a coast vanishes. 

5 
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